
UNLIMITED

RSRE
1< MEMORANDUM No. 4289

u ROYAL SIGNALS & RADAR
ESTABLISHMENT

A WELL CONDITIONED FORMULATION FOR THE
ANALYSIS OF MULTI-LAYERED FREQUENCY SELECTIVE SURFACES

USING A CASCADED MATRIX APPROACH

DOT-TO Auhors: A J Mackay & J G GallagherS~ rELEfCE~
OCT 17 19

D
0)

qtl* PROCUREMENT EXECUTIVE,
6 MINISTRY OF DEFENCE,

R SR E MALVERN,
WORCS.

z

(n 89 10 16 'l4 9
UNLIMITED



CONDITIONS OF RELEASE BR-Il! 1531
0051801

COPYRIGHT (c)
1988
CONTROLLER
HMSO LONDON

Reports quoted are not necessarily available to members of the public or to commercial

organisations.



RSRE MEMORANDUM 4289

Title: A WELL CONDITIONED FORMULATION FOR THE ANALYSIS OF
MULTI-LAYERED FREQUENCY SELECTIVE SURFACES USING A
CASCADED MATRIX APPROACH

Author: Andrew Mackay and J G Gallagher

Date: May 1989

ABSTRACT

A general method to analyse multi-layered Frequency Selectixe Surfaces is given
which includes a full coupling of evanescent and decaying modes in a well conditoned
manner. The method is capable of analysing arbitrary lossy dielectric and magnetic
materials used as supports with partially conducting (Salisbury) surfaces and is valid for
incident plane waves with arbitrary polarisation and angles of incidence.

The solution is obtained by modal matching of the fields in the apertures of each
surface in a manner which satisfies the boundary conditions using Galerkin testing. One
important feature is the manner in which the cascaded matrices are put together to avoid
numerical problems.

Theoretical predictions have been made on a wide range of surfaces and tested
against experiment with satisfactory results.
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A WELL CONDITIONED FORMULATION FOR THE ANALYSIS OF
MULTI-LAYERED FREQUENCY SELECTIVE SURFACES USING
A CASCADED MATRIX APPROACH

Andrew Mackay and J G Gallagher

INTRODUCTION

Frequency selective surfaces have many possible uses as filters, polarisers and for
radomes and in other electromagnetic structures. In many instances, single layer suriaces
might be suitable and for many others a multi-layer surface can be designed from a
knowledge of the Transmission and Reflection coefficient of the single surfaces in isolation.
This latter approach is often referred to as a simple scattering matrix (SMA) analysis and
is valid provided there is no evanescent mode coupling between layers [1]. However,
there will be many instances where evanescent mode coupling must be taken into account
when the layers are a sufficiently small fraction of a wavelength apart. Indeed, there is
no reason to suppose that multi-layer frequency selective surfaces can not be explicitly
designed to utilise this strong coupling. In such a design procedure it is clearly desirable
to have a method for calculating the properties of such strongly bound layered structures
with a fair degree of confidence.

Shuley [2] considered a generalisation of the SMA to allow for complete interaction
by the use of evanescent mode coupling. Similar methods have been used later by Cwik
and Mittra [3], Hall, Mittra and Mitzner [4] and Christodoulou et al [5].

In order to use an exact Floquet modal analysis it is necessary to construct a unit
cell common to all layers of the surface so that the entire structure is periodic with
respect to this global unit cell. This is only unnecessary if there is insignificant
evanescent mode coupling between surfaces and in this case surfaces do not need to share
a common periodicity. In general, any periodic surface can be constructed from a
(global) unit cell represented as a parallelogram illustrated in fig 1.1 below
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Figure 1.1

All fields generated by the FSS must thus be periodic with respect to the Floquet modal
values
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where p,q are integers of either sign, ko = 2r/xo is the wavenumber of the incident field
in free space, and 60 and 'o are the angles of incidence of the plane wave as illustrated
in Fig 1.2 below:

z

FSS in x-y plane y

Figure 1.2

It should be noted that these Floquet modes are common to all the layers of the FSS,
independent of any dielectric or magnetic material values since the value of no is
unchanged within the structure and k.sin6 is unchanged by Snell's law throughout the
structure (where k is the wavenumber in any layer of the multilayer structure, and 0 is
the direction of incidence - complex for a lossy material - within that layer).

The modal fields have an x,y dependence proportional to exp(-j[upqx + vpqy]) and
a z-dependence proportional to ex(-j-ypqz) where

Y - ( k -u - v (2)rro pq pq

and when an implicit time dependence eJ( t is assumed. er,P-r are possibly complex with
a negative imaginary part representing loss and -Ypq is taken so that the imaginary part
Im(lpq) < 0 to ensure correct behaviour as z --* +w (assuming all distances are taken in a
positive sense).

The electric field may be decomposed into orthonormal Transverse Electric and
Transverse Magnetic vector Floquet Modal Fields Opqr with r = I representing TE and r
= 2 representing TM modes, so that

1_ _ [V u~
pq pEq r-1(pqr - d p - It p pq ,/dV~dy Pq P
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where t - u(4)
pq vpq pq

pq exp([_4upqx + vpqYJ (5)

We apply the electric and magnetic field boundary conditions by considering convenient
canonical structures with which we build the complete multi-layer structure. For example,
an FSS interface backed by a single layer of material (as used by Chen [6]) may be used.
Alternatively, only a single interface may be used. The latter approach is adopted for
programming convenience which will be efficient whenever any dielectric layer is
sandwiched by FSS conducting structures on both sides. Choosing this approach, any
arbitrary multi-layered FSS may therefore be constructed from the two canonical structures
illustrated below.

Case (1) CoriT .' I'AreR.J

I

Figure 2.1

where a metal FSS pattern is bounded on either side by materials with different bulk
electrical characteristics for er and Mr. (Resistive patterns may also be considered - see
Hall, Mittra and Mitzner [4])

Case (2) 7 gESiSive Si,aFACE IjrErn€E

Figure 2.2

where there is a resistive (possibly not presert) o cf zero thickness bounded or, either
side by two different electrical materials
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These two structures, when separated by any thickness of uniform material in any
combination can be used to represent any multi-layer FSS of conducting elements, resistive
screens and arbitrary supporting materials, as illustrated in the example figure below, Fig
2.3.

(2.) (a) (I) (7) 0')

Figure 2.3

where each interface may be represented as an example of a canonical structure (1) or a
structure (2). In this paper, we choose to propagate the electric field through from one
layer to the next.

We now show how to relate the (electric) fields on either side of the interface of
a canonical structure.

BOUNDARY CONDITIONS AT AN FSS INTERFACE

We first consider the interface of canonical structure (1). Using a generalised
scattering matrix approach, the field to either side of the interface can be written as the
sum of incoming and outgoing modal fields.

Iw
,A rv, T ri,-

Rrt Wr r"

Just to the left of the interface, the total tangential electric field, E- t may be written as

-E [ , Apqr tpqr(X + Rpq pqr(X) , 2 f FSS aperture

0, 4 f FSS aperture (6)



where x is evaluated at the interface z = 0 and the metal pattern can be resolved into

regions of conductor (no aperture) and regions of no conductor (aperture). Similarly, on

the right of the interface, the total tangential electric field, Et may be written as

STpqr r pqr x FSS aperture-t Tpr4pqr
(a ) 

+ pqr i ' -

pqr pqr (7)

0, x 4 FSS aperture

where
Pmax Qmax 2

pqr P--Pmax q--Qmax r-1

Pmax and 0 max are sufficiently large and where Apqr , Rpqr , Tpqr , Wpar are complex

constants representing incident reflected transmitted and returning wave mode coefficients

respectively. We may now apply the tangential boundary condition across a

magnetic/dielectric interface; Et is continuous over the aperture. Since the tangential field

is zero elsewhere on both sides, we can write

A (x) + R T (x) N (X)20 +N W (x)

pqr pqr - pqr pqr pqr pqr pqr pqr

pqr pqr pqr pqr

for x everywhere on interface (8)

We may now also apply the condition that the tangential magnetic field is also continuous

over the aperture (but not over the conductor). On the left hand side, the total

tangential magnetic field is given (following a generalisation of Chen [6]) by

N R (12
- z x H- - N A (1) pr(X - 1 pr(x) (9)

pqr pqr pqr pqr pqr pqr pqr (

pqr pqr

and on the right hand side by

+ (2) W (2)
.XH t - L Tpqr Epqr ipqr

(
2

) - Z' pqr tpqr 1pqr
(
2 (10)

pqr pqr

where E(ipqr are the modal admittances in region (i) given by
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(/)7p r -1(TE)
pqr UI)

r o

r~ - 2o , (TM) (11a)

'(1)Ypq

where

A 'r k0 tpq(1b

and _Y(2)
(2) __

(2) r I- (TE)

r 0

I3 r =2 (TM) (12a)
(2) P

-Y pq / 7-

where

(2 f ( 2)P(2) k2_t2 (12b)V r r 0 PlI

combining (9) and (10) we now have

A 1(' i (2s) - Y R (1)
L. pqr pqr pqr - - pqr pqr pqr

pqr pqr

- Tpq t (2) (20 - (2 ICr~t~ (2j) N aperture only (13)
pqr pqr

Equations (8) and (13) may now be solved in the following manner. Firstly, the
orthogonal properties Of gapqr may be used in conjunction with (8) to write

A q + R -q T pr+ W pr V p,q,r (14)

pq qr pr q



(This may be shown by forming the dot product of (8) with -*kQm and integrating over
the whole unit cell). Substituting (14) into (13) yields

2 A ((2) T + 2
pqr pqr pqr pqr pqr pqr Zpqr

(
"

)

pqr pqr

+ W [ (1) - (2) l
S pqr[ pqr 'pqrJpqr(- )
pqr

x ( aperture only

(15)

If we write the total tangential electric field at the interface by Et , then an alternative
use of the orthogonality condition with (8) is that

Tpqr + W'pqr ' (20 -2pqr (2) da (16

aperture

Substituting (16) into (15) provides a more useful formulation in terms of the total
tangential electric field given by

2 Ap (1) (20 r,(1) + (2)] (2
pqr pqr pqr Iqr pqr + pqrJ pqr

aperture

Et (x')- .,pqr (_x )da'-t pr

w .(2) (s)
p pqr pqr pqr
pqr

X f aperture only (17)

Et (x) can be written as a completely arbitrary expansion of basis functions [6] which are
only required to be linearly independent over the aperture under the inner product

<4, 1> - JA(x) . B (x) da (18)

aperture

so that we may write

7



t (X) Fnmn(X) x aperture (19)
mnQ

Note that the inner product (18) implicitly assumes that Et(x) is zero when x aperture,
and thus (19) requires .mnQ(_) only to be defined over the aperture. In practice, 'mn
may be chosen as the electric field slot modes for a slotted structure (or as the fields
caused by the expected current modes in an element structure) thus ensuring as few -mn C
as possible for good convergence to the solution. In order to solve (17) given a set of

ImnQ we may assume Galerkin testing, substitute (19) into (17), form the dot product of
(17) with k*MNL(O) and integrate over the unit cell (with _*MNL(X) defined as zero for
x 1 aperture). This yields the set of equations

2{, L} . {Z.} {FQ} - 2{fL} (20)

where

A (1) c*MNL (21)
IMNL - pqr tpqr pqr

pqr

YmnC - (1) + (2)] C*MNLcn (22)
MNL - pqr pqrJ pqr C rqr (2

pqr

(2) c*MNL

MNL pqr 'pqr pqr qr
pqr

and where

CNNL (s)da' (24)
pqr J L 

'  
pqr

aperture

In order to employ matrix notation the subscripts (or superscripts) MNL (mnC) in
(20)-(24) will be tabled by a single index i(j) so that MNL (1 i}, {YMNLmnC} =

{Yij} etc. We may thus write the vector of values I = {li), etc, and the matrix of values
=Yij}, etc. (20)-(24) now become

J- - CtEM E -
(1 )  

diagonal matrix, diag {1)}

C- {ci}

. {c i }Y -CtE(I +£(2J , E2: - d ing



Ci - E 2)W - {W.} E fF{r.

so that (20) may be rewritten in matrix notation as

2CtE(INA - C'[E (') + 
(2 )] C F - 2C'E(2 )w (25)

Note that there is a very important feature in this equation; C is in general rectangular so
that neither its inverse or the inverse of Ct exist. Indeed, even when C is square it is
likely to be extremely ill conditioned if sufficiently many Floquet modes are taken into
account (ie Pmax and Omax are sufficiently large). This seems to be a general feature
of most frequency selective surfaces; the excitfd modal fields and currents always span a
significantly smaller set than the set of permissible Floquet modes might allow.

Substituting (19) into (16) and using matrix notation with (Tpqr} {Ti} a I, yields

T + W = C F (26)

substituting (26) into (25) gives the matrix equation

2C tE (I - C t [E (1) + E (2)] i + C t Ir () - E (2)1 (27)

which together with (14) in vector notation,

A + R = T + W (28)

gives us the general connection matrix between electric fields on the left and right hand
side of the interface,

[T 1 f2QE() 2QE (2 )  A

S 2QE
(1 ) 1 2QE (2) W (29)

where I is the identity matrix and

Q - C y-IC (30)

Note here that Y- 1 exists, but Q-1 does not exist in general. It is at this stage that an
important point should be noted; in general, it is not possible to reorganise (29) to
achieve T and W on one side of the equation and A and R on the other because of this
inversion . roblem. This seems to be assumed possible in the cascade formulations (41,[51
in order to calculate a composite transmission matrix. If the block matrix in (29) is
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suitably truncated (ie 0 is suitably truncated) it may be possible to invert Q (and thus
reorganise (29)) but such a procedure may be very dangerous because the original Q is
rank deficient. What is required is a scheme that does not involve the inversion of Q.
Cwik and Mittra [3] describe one such method while the authors will describe another.

BOUNDARY CONDITIONS AT A RESISTIVE SHEET

We now consider the second canonical interface (2), and asume a resistive sheet of
1/a s Ohms per square between two electrical media

A fir T p ir

In this case there is no cross coupling between modal fields and thus a surface current

J T E (t )  
(31)

pqr s pqr

is impressed on the surface where

E(t) - A + R - T W (32)
pqr pqr pqr pqr pqr

since the tangential electric field is still continuous across the interface.

We now have a discontinuity in the tangential magnetic field given by

pqr pqr pqr pqrj [ prqpqr pqrj -
3
pqr

thus, assuming the previous matrix notation where {Ei(1,2)} f{pqr(l 2)}. then (31), (32)
and (33) may be combined to give us
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L1-diag 12[E(')+ E (2) E (2 ) +1]IjE(l)}

d (gt[1) (2 + a 1[E ) (~2) u

dd.a f[+E + 2 
+l [E 1 [E(1E or~ ~ ~]

diag{2(E(I) + + (2) + (2)11

As opposed to (29), (34) is a matrix whose elements may be properly inverted if required.
However, since this may not be done with (29) a method must be found to connect
matrices of this form which does not require a reorganisaiton. Such a method is
illustrated below.

CONNECTION OF MATRICES WITHIN A GENERAL CASCADED SYSTEM

A cascade system that does not require the inversion of the matrix 0 in (30) may
be constructed. This has the further advantage that evanescent modal fields and fields
within a lossy dielectric can be organised in such a way that they always appear to decay
in the numerical implementation for arbitrary thicknesses of dielectric. This means that
the number of evanescent connections between interfaces can be highly overspecified
without causing any ill-conditioning of the scheme. The method proceeds by a grouping
of two contiguous canonical interfaces separated by a dielectic)magnetic spacer to form a
single composite structure whose form is also that of (29) and (34). This composite
structure is then taken together with the next canonical interface and the method repeated
in a systematic fashion over the entire multi-layer structure. The grouping of two
contiguous structures is illustrated below in Fig 3.

T Ai
-- 2

Figur/ /

Figre 3
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Suppose

121, 'I(35)I X'II Xi2

and

r~i TX' X" A1[2] 11 1211[- 2 1(36)

-2 X 2 -2'

where Xij and Xij are known but non-invertible and W1 and A2 are unknown
quantities. In general, if the material between interface (1) and (2) is 1r,r separated by
a distance d, then

A2 - H T, (37)

W1  - H R2  (38)

where

H - diagIexp[+ j, d]} (39)

where

{Y1} {-YpqQl

and

p k 2-_t 2(40)pqQ - r rko pq

defined so that -yqQ (independent of Q) is defined with Im(-pqQ) < 0. Equations (35),
(36), (37) and (38') may be combined as

11 - [N A + 2 HX X "W 2] + X 2 H X 1 H 1 (41)

We may thus write

1- (I _L) -  (42)

where

- XilA + Xi2 H X52 W2  (43)

and
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L - Xi2 X1l H (44)

Thus, even though L- I may not exist, (I - L) - does exist and is well conditoned.

We can now obtain 12 and RI as

2 I Z12 Al45

where

Z - X" H(- L)-  X (46)11 11l X21
-l

Z12 - X"l H(l - L) Xi2 H X,2  1 X2 (47)

-1
Z 1 X'l + X2 H Xl H (I - L) X! (48)

Z = x 2 H X l H(l - L)-' Xi2 + X 21H Xh2  (49)

With 12 and R, obtained from the first two interfaces, the next interface is treated using
its own conneciton matrix and that just generated via (45) to construct a new conneciton
matrix uisng the same method as outlined above. This proceeds until there are no more
interfaces in which case we have a final incoming E. = 0 and T and R are the final
required vectors of the composite structure. The method differs from that of Cwik and
Mittra [3] in two important respects. Firstly, the matrix H never appears in an inverted
form so exponential terms never cause numerical problems by becoming too large and
secondly, our approach uses electric fields rather than power waves.

In this formulation it may immediately be seen that interactions between any pair of
interfaces in fig 3 are coupled through the propagation equations (32) and (38). This
means that the sizes of the TI, A2, WI and R2 may be limited in size to encompass
only those evanescent modes whose decay (described by H) is non-negligible over the
distance d. We may further note that A,, a, and T2, W2, may both be of different
lengths in the situation where distances between interfaces vary greatly in size (so that the
same number of evanescent modes is not required to couple each interface). In fact, this
will generally be required since usually only the zero-order modal coefficients will be
required in the air region to either side of the composite FSS. This will then result in
the matrices Xij', Xij" and Zll and Z2 2 being rectangular.

One possible scheme that may be imposed is to set an automatic threshold 0 < T <
I and to limit the matrix size so that only those modes p,q,r are taken in determining
the size of 11 , A2, A, and R2 such that exp[+j'pqrd] < T from (39),(40).

TRANSMISSION AND REFLECTION S-MATRICES AND ENERGY BALANCE

Once the final T and R are known in terms of the initial vector A. the problem is
almost solved. Usually, the final quantities required are the transmitted and reflected
electric fields in the .1 and 6 directions given an incident wave of unit amplitude and
arbitrary polarisation incident at the angle (po,80o). With such a full polarimetric

13



description it is convenient to describe a polarisation coordinate system in the direction of
the wave.

Let us write the incident electric field by

E - a o 1 +~ ct o (50)-o °,po 80 1 (50

with

i-o " - sin -p 02 + cos 'P 0

- Cos o Cos 00 x + sin p cos 0 0 - sin 0 z (51)

the reflected wave has an angle of reflection 0refl = 0o, Vrefl = + , but the wave is
directed away rather than towards the surface. Thus define

refl = o

-ef - -o (52)

so that

Erefl - 13 pref] + 0 0refl 1 (53)

With the transmitted field, the transmission angles Otran = r - Bo 'tran = r + o and
the wave is directed in the same direction as the incident wave, thus define

2t ran "40

-(54)8 - 0
tran -o

so that

Etran 7 ie tran + 'YO Ptran " [ (55)1O i

With these definitons, we wish to construct the scattering matrix for transmission given by

Etran - 21 t 12 1 Lo (56)

and the scattering matrix for reflection given by
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I

r Il I r 1 2 ] ° ( 5 7 )

S  z 2 1  r22

ithrae the be0erm include , given by

~2 2 2

(for r and 2 interactions) i1 given by

: () 
[() ]

l1 z12

r(2) 
((2)

(for r 1 and 2 interactions)

^ (1) ( ) s 0 ]

tll tll -z 1 2
t21 t22 ^Z(1)^ 1)(

-z21/cos 0 22

and

11 r12 11 12l59
r21 r22 z (2) _2)(9

z21/cos 0 -22,

furnishing the desired result. If the composite FSS is lossless, we may note that

conservation of energy implies

I 12,1'11 ,1 + I2  r 21 12 _ 1 (60)

; and

t 1212 , 1t22 12 + 1r 21 12 + Ir 22 12  _ 1 (61)
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for arbitrary angles of incidence provided that no higher order grating lobes are excited.
This provides a useful check on the calculation. Unfortunately, although a necessary
condition (60) and (61) are not a sufficient condition and it is not appropriate to use (60)
and (61) to attempt to provide an estimate on, for example, the number of modes
required in the program. When losses or grating lobes are present we have the strict
inequalities.

I + 11 It2 l 1 + ir, 1 r 2 1 1' <

1 12 12 , t21 2 12  1r2112 + Ir22 12 <

and with lossy dielectrics it is often possible to get significant energy absorption.

MEASUREMENTS FACILITY

In order to confirm the method, predictions using this program and experimental
measurements of the transmission coefficient using a Vector Network Analyser have been
made for a selection of frequency selective surfaces at various angles of incidence and
polarisation. The experimental arrangement is illustrated below in Fig 4.

TRANSMIT / ,C . .' REC'VE

VECTOft
NETWOP.K
ANALYJaR

Figure 4
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Measurements have been successfully made from 4.5 GHz to 20 GHz in ranges
determined by the horns used to transmit and receive. The FSS is about 4 x 4 feet in
size, rotatable about its vertical axis and the horns may be rotated so that the E.-field is
either vertical or horizontal. The separation distances L1 and L2 are of the order of 8
feet providing an approximate far-field plane wave illumination of the screen.
Measurements are made with and without the FSS panel and the appropriate vector
division is carried out automatically by the VNA providing both power transmission and
phase (if required) coefficients of the FSS.

PREDICTIONS AND EXPERIMENTAL COMPARISONS

In the following examples rectangular slotted structures are considered. The reasons
for this are that (1) their modes and thus the best choice of field expansion modes
ipqr(X) are well known (see, for example Chen [6]) and (2) they are of considerable
practical interest for the design of frequency filters that are also required to be
polarisation isolating.

Example 1

Consider a single array of slots backed onto a dielectric substrate. The array of
slots has a unit cell size (see fig 1.1) with dx = 17.5mm, dy = 7.5mm, , = 41 with a
single slot per unit cell of length 15.0mm by 1.0mm aligned with respect to the unit cell
so that its long dimension is pointing in the x-dirn. The dielectric backing is standard
fibre-glass FR4 material of thickness 1.57mm with an estimated Re(fr) = 4.0 and loss
tangent tan 5 = 0.027 (These values are assumed in all the numerical predictions by the
authors using FR4, and seem the best values to take over the frequency range 7.0 GHz -*

17.0 GHz).

In the following predictions, the number of Floquet modes used are given by Pmax
= max = 13, and the expansion modes J-pqr are chosen as -pqr = sgqr for q = 0 and

-10 < p < 10. (This is not a good choice for 2.pqr with slots, ut is sufficient to
illustrate the method). Finally, the number of evanescent modes required to couple the
air-dielectric and slotted array interface is taken with an automatic threshold of T = 0.05
at all frequencies and angles of incidence. Figures 5.1 a-c illustrate the predictions and
measurements of the power transmission coefficient in db, given by 201ogl 01 tll I, over the
range 7 to 17 GHz for transverse electric polarisation (E directed in the Y-direction) for
0 = 0, 10 and 45, (V. = 0). The continuous curves illustrate the measurements and the
dots the predictions. Figures 5.1 d-e illustrate the predictions and measurements for 0 =
10, 45" (; = 90) for the transverse magnetic polarisation (H directed in the x-direction)
given by 20 log10 t2 2 1.

Example 2

Consider the same array of slots as used above, but with one on either side of the
dielectric substrate. The two arrays are arranged so that there is a lateral offset between
them in the g-direction, but no offset in the y-direction. If 100% offset indicates a
lateral shift in a given direction by a complete unit cell, then in this example there is a
50% lateral offset of the slots in the x-direction (along the axis of the slot).

Figures 5.2 a-c illustrate the predictions and measurements for transverse electric
polarisation at 0 = 0, 10 and 45, and figures 5.2 d-e illustrate the predictions and
measurements for transverse magnetic polarisation at 0 = 10 and 45" as in example 1.

,
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Example 3

Consider 3 arrays of slots, of the kind described above, separated by two thicknesses
of FR4 material both of width 1.57mm. In this example, all 3 slot arrays are aligned
with each other with no lateral offset. The frequency range examined is from 4.5 GHz
to 12 GHz and a figure for the threshold T is chosen as before with T = 0.05 (where it
may be noted that about 41 transverse electric and 41 transverse magnetic connecting
modes are necessary at 12 GHz). Figures 5.3 ab,c show predictions and measurements at
0 = 0, = 10" TE and 0 = 10" TM in the sense defined in example 1.

CONCLUSIONS

The method described is the most robust multi-layer FSS method that the authors
are aware of with significant accuracy advantages over some other cascade methods.
Provided a sufficient number of Floquet modes is chosen together with a sufficiently good
set of field expansion functions (necessary criteria for any single layer FSS program) then
the method described is well conditioned and capable of high accuracy when (1) there are
significantly fewer field expansion functions than evanescent modes and (2) the coupling
threshold T is chosen arbitrarily small. The examples presented are by no means special
and probably do not have any special practical application, but a more detailed parameter
study is currently underway to examine slotted arrays of more interest. This will be
reported on in a later article.
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